
ARM Cortex M3(i)

Department of Electronics
Academic Year 14/15

(ver 25-10-2014)

Topic 3

Memory Management and Access

3.1. Memory maps
3.2. Memory expansion
3.3. Memory management & Data alignment
3.4. Design of a memory map
3.5. Access management and timing
3.6. Cortex-M3 Memory Map
3.7. The External Memory Controller (EMC)
3.8. The Memory Protection Unit (MPU)

Index

3.1. Memory maps

Memory map
 It refers to the organization of the different memory units in the uP address space

uP address space
 Number of addresses: 2m positions (addresses), being m the size of the address bus

 Width word n bits, being n the number of lines (bits) of the data bus

 uP address space: 2m X n

3.1. Memory maps

The memory map specification can be carried out as follows:

Functional: it describes the allocation (addresses) of the different elements (hardware or
software) of the digital system, according to their function: the location of the program
sections, general data and data tables, interface registers, etc.

Physical: it describes the address correspondence between the map and the physical
device which implement it. All the connections between the devices will be carried out
(taking into account the structure of the address bus and data bus, the method of
selecting devices, etc.)

By means of the memory map, it is described which addresses are occupied by the
different devices assigned to specific functions

Conceptual elements included in the map:
Program memory (typically non-volatile memories)
Data memory (can be volatile and non-volatile memories)
 Input/output space. All the interfaces according to the peripherals that will be needed

have to be included in the map
To sum up, the memory map typically includes ROM, RAM and I/O interfaces

3.1. Memory maps

 In the design of the map, it is specified which addresses are occupied by the different
devices, indicating:
 The starting address, usually called base address

The last address. It is calculated as: base address+number of positions occupied by
the device in memory

 Considerations about the base address, Could it be any value?
1. It has to belong to the uP address space (logically)

2. It has to be an appropriate value, so the last address is inside the address space

3. It has to be multiple of the size of the memory block that has to be addressed: if it is
needed to map a M bytes block, the address base has to be multiple of M

Example: for a 8Kbytes block, the address base could be 0x0000, 0x2000, 0x4000 …
• The 0 address is multiple of any block

• There is a “trick”. The address base finishes always in a determined number of 0 (how many?)

3.1. Memory maps

Example of a memory map
• 8 bits uP (width of the data bus), 16 bits

address bus
• Which is the address space of the uP?
• Which are the selected base addresses?
• Which is the size of each block?

MEMORY MAP
Functional Map Physical Map Addr.

Program and
constant data tables

Chip ROM,
8Kbytes

0x0000
0x1FFF

Empty area ----- 0x2000
0x3FFF

I/O devices Integrated circuits,
LCD displays, etc.

0x4000
0x41FF

Empty area ------- 0x4200

0x8FFF
Hex keyboard Keyboard model 0x9000

0x9003
Empty area -------- 0x9004

0xBFFF
Variables and

temporary data

Chip RAM,
8Kbytes

0xC000
0xCFFF

Serial transfer
data

0xD000
0xDFFF

3.2. Memory Expansion
 Goal: To obtain a block of memory of larger capacity by using basic memory chips

(usually of the same capacity), with two purposes:
 To provide a memory block of larger capacity.
 To adapt to the specifications of the selected uP (data bus and/or address space)

 Reminder:
 Capacity=number of words X size of each word

 Capacity increases if one of the parameters (or both) increases

 Types of memory expansions:
 To increase the size of the word (it means to increase the number of bits per word)
 To increase the number of words
 Both of them

 Expansion of the number of bits per word (word length)
 Conceptually it means to increase the width of the data bus in the new memory block. How

many bits?
 Each time the memory block is accessed, all the memory chips are simultaneously activated

(the data is “shared” among all the chips)
 The size of the address bus is held

3.2. Memory Expansion

Memory
1Kx4

Memory
1Kx4

Memory
1Kx4

A[9:0] D[3:0]

Memory of 1Kx8

A[9:0] D[7:0]

3.2. Memory Expansion

Memory
1Kx4

A[9:0] D[3:0]

Memory
1Kx4

Memory
1Kx4

Memory
2Kx4

A[10:0] D[3:0]

 Expansion of the number of words
 Conceptually it means to increase the size of the address bus

How many bits? (the number of bits is increased always in power of two)
 The width of the data bus is held

 Combination of both expansions, to increase the number of bits per word, and the
number of words:
 The width of the data bus is increased
 The address bus size is increased

3.2. Memory Expansion

Memory
1Kx4

Memory
1Kx4

Memory
1Kx4

A[9:0] D[3:0]

Memory de 2Kx8

Memory
1Kx4

Memory
1Kx4

A[10:0] D[7:0]

 How is the memory connected to the uP?
 The resulting expanded memory has to be connected as if it was only one chip,

connecting the suitable lines of the data, address and control busses.

3.2. Memory Expansion

Example: 64Kbytes memory RAM
• Address: 16 lines, e.g. A0-A15

(there are other solutions)
• Data: 8 lines
• Control: operation line(R/#W),

address validation (#AS)

Control bus

Address bus

Data bus

 1Kx12 memory by means of 1Kx4
memories

3.2. Memory Expansion: word length

 Example of a whole system: 16Kx8 from 16Kx4

3.2. Memory Expansion: word length

 Example of a whole system: 16Kx8 from 4Kx8

3.2. Memory Expansion: number of words

Question: Deduct the address range that implements each chip, if the memory
address busses are connected to A2-A13, and for decoding are used A0 and A1

Address

Data

Design a 2Kx4 memory block by means of 1Kx4 memory chips

3.2. Memory Expansion: number of words

 Which is the address range of each chip?

 If A0 is used for selecting each chip (the memory address bus is connected from the
uP A1 line), which is the address range of each chip?

Example 1

 2 memories of capacity 1Kx4 are
required

3.2. Memory Expansion: number of words

 Address range

 Nº1 0x000-0x3FF

 Nº2 0x400-0x7FF

 If A0 is used, one chip will use
even addresses and the other
the odd ones in the range
0x000 -0x7FF h

Solution 1

Addresses

Data

Design a 20Kx8 memory block by means of 4Kx8 memory chips.
For decoding, a 3/8 decoder has to be used

3.2. Memory Expansion: number of words

 Which is the address range of each chip?

 For which capacity has the expansion been designed?

Example 2

3.2. Memory Expansion: number of words

 The expansion is prepared for 32Kx8
capacity

 Address range
 0xB000-0xBFFF

 0xC000-0xCFFF

 0xD000-0xDFFF

 0xE000-0xEFFF

 0xF000-0xFFFF

Solution 2

3.2. M. Expansion: nº of words + word length

Example 3

Design a 4Kx8 memory block by means of
1Kx4 memory chips

 The memory structure depends on the number of bits of the uP external data bus

 8-bit data bus, only a bank (group) of byte size

3.3. Memory Management & Data Alignement

Dirección de
la palabra Banco Par Banco Impar

0 Byte 0 Byte 1 » Primera palabra

2 Byte 2 Byte 3

....

N-2 Byte (n-2) Byte (n-1)

N Byte (n) Byte (n+1)

FF..FE FF..FE FF..FF » Última palabra

Dirección de
la palabra Banco Par Banco Impar

0 Byte 0 Byte 1 » Primera palabra

2 Byte 2 Byte 3

....

N-2 Byte (n-2) Byte (n-1)

N Byte (n) Byte (n+1)

FF..FE FF..FE FF..FF » Última palabra

(Even) Bank 0 (2N) (Odd) Bank 1 (2N+1)

First word

Last word

2 bytes Word
address

 With an external data bus of 16 bits (although internally it can be a 32-bit bus),
memory can write or read 16 bits by 16 bits. Then, memory is structured in two
banks: the odd one and the even one

• Access to data of one and two bytes is allowed

• In this case, control lines are added to indicate if only a byte is accessed (odd
or even) or two bytes are simultaneously accessed. (i.e. 68000 by Motorola)

3.3. Memory Management & Data Alignement

3.3. Memory Management & Data Alignement

 External data bus of 32 bits, memory is arranged in 4 banks

 Accesses to one, two or four bytes are allowed. Indicative control lines are included
(i.e. the ColdFire by Freescale)

4 bytes Word
address

Bank 0
(4N)

Bank 1
(4N+1)

Bank 2
(4N+2)

Bank 3
(4N+3)

0 Byte 0 Byte 1 Byte 2 Byte3
4 (Half) Word 4 (Half) Word 6
8 (Double) Word (Longword) 8

…. --- --- --- ---
N-4 Byte N-4 Byte N-3 Byte N-2 Byte N-1

N (Half) Word N (Half) Word N+2
N+4 (Double) Word (Longword) N+4

….
FF…F8 Byte FF…F8 Byte FF…F9 Byte FF…FA Byte FF…FB
FF…FC Byte FF…FC Byte FF…FD Byte FF…FE Byte FF…FF

3.3. Memory Management & Data Alignement

 Summary
 If the data bus size is 8 bits, maximum size of data transfer is also 8 bits.

Memory structure will have only one bank

If the data bus size is 16 bits, and if the min. size of data transfer is 8 bits;
then, memory structure will have two banks (even -2N- and odd -2N+1- banks).
At least one control line is needed for distinguishing the access

If the data bus size is 32 bits, and if the min. size of data transfer is 8 bits;
then, memory structure will have four banks (4N, 4N+1, 4N+2, 4n+3 banks).
At least two control lines are needed for distinguishing the access

Pay attention to the proposed exercises for doing in class

3.3. Memory Management & Data Alignement

 How are the data bytes aligned in memory? Two proposals
 Big endian or Little endian

Big endian. The least significant byte is stored in the memory cell corresponding
to the highest address, of ones which contain the data

In any case, the memory cells, which contain the data, must be consecutive

 Bank 0 (2N) Bank 1 (2N+1)
0 Byte 0
2 Byte 3

…
N-2 Word Aligned data

 Byte (MSB) Byte (LSB)
N

3.3. Memory Management & Data Alignement

Little endian. The least significant byte is stored in the memory cell corresponding
to the lowest address, of ones which contain the data

In any case, the memory cells, which contain the data, must be consecutive

Attention: In practice, big or little endian do not differentiate, but it is needed to know
the alignment model for the interchange of data between systems

 Bank 0 (2N) Bank 1 (2N+1)
0 Byte 0
2 Byte 3

…
N-2 Word Aligned data

 Byte (LSB) Byte (MSB)
N

3.3. Memory Management & Data Alignement
 Example of data storage 0x12345678 from address 0x84 in both formats:

Data: 12345678H at address 84

The Least Significant Byte at the highest address

The Most Significant Byte at the highest address

3.3. Memory Management & Data Alignement
 Aligned and misaligned data

 This concept is only applicable if the data is formed by more than one byte
(2 bytes, 4 bytes, etc.) and the uP allows the access to different sizes:
8 bits, 16 bits, 32 bits, etc.

 Aligned data: data is aligned if its access only requires a binary combination of the address
bus

 Misaligned data: data is misaligned if its access requires two or more binary combinations of
address bus. This leads to different accesses (as many binary combinations of address bus)

3.3. Memory Management & Data Alignement

 Aligned and misaligned data (example by using little endian)

Word
address

Bank 0
(4N)

Bank 1
(4N+1)

Bank 2
(4N+2)

Bank 3
(4N+3)

0 Byte 0 Byte 1 Byte 2 Byte3
4 Halfword 4

LSB
Halfword 4

MSB
Halfword 6

LSB
Halfword 6

MSB
Aligned

data
8 Byte 8 Halfword 9

LSB
Halfword 9

MSB
Halfword A

LSB
Misaligned

data
C Halfword A

 MSB

10 Longword 10
LSB

Longword 10

Longword 10

Longword 10
MSB

Aligned
data

14 Longword 15
LSB

Longword 15

Longword 15

Misaligned
data

18 Longword 15
MSB

3.4. Design of a memory maps
Stages of the design of a memory map:
1. Analyze the specifications of the system (capacity of memory, types of chips, ...)
2. Plan the functional map, decide in which addresses to allocate different systems
3. Design of the physical map. The selection logic (decoding system) has to be

designed for accessing to the desired memory position, and no to others:
 Through the address that appears in the address bus, the chip select line belonging to

the chip that implements the address has to be activated. Prepare a decoding table!
 Pay attention: the address bus is divided into two groups of lines. One group (the

lowest address lines) is directly connected to the memory address bus (the same
number of lines as the memory has). The remainder of the lines (the highest one) can
be used for the selection logic.

 The selection logic can be implemented by means of logic gates, decoders,
programmable devices (PLD, PAL, …), etc.

4. Connection to the uP (address, data and control busses)
Important: In addition, very often it is required a memory expansion as well for obtaining
the desired capacity.

3.4. Design of a memory maps
Example of design 1:
A given uP has an 8-bit data bus and a 16-bit address bus, with and address validation
line, AS#. The memory map to be designed has the following features:
• Permanent memory for code and data, 8Kbytes, starting from address 0x0000
• Volatile memory for temporal data and variables, 4Kbytes, starting from address 0xC000
• Volatile memory for serial transfers, 4Kbytes, after the later memory block
• I/O devices, 512 bytes starting from address 0x4000
• Hexadecimal keyboard, occupying 4 memory positions, mapped at address 0x9000

Memory requirements:
According to the specifications, it is needed 8Kbytes of ROM mapped at address 0x0000, 512
bytes for I/O mapped at address 0x4000, 4 bytes mapped at address 0x9000 for the keyboard and
8 Kbytes of RAM, mapped at address 0xC000

3.4. Design of a memory maps

 Maps:

 Functional

 Physical

MEMORY MAP
Functional Map Physical Map Addr.

Program and
constant data tables

Chip ROM,
8Kbytes

0x0000
0x1FFF

Empty area ----- 0x2000
0x3FFF

I/O devices Integrated circuits,
LCD displays, etc.

0x4000
0x41FF

Empty area ------- 0x4200

0x8FFF
Hex keyboard Keyboard model 0x9000

0x9003
Empty area -------- 0x9004

0xBFFF
Variables and

temporary data

Chip RAM,
8Kbytes

0xC000
0xCFFF

Serial transfer
data

0xD000
0xDFFF

3.4. Design of a memory maps

 Design of the selection logic: Decoding table

MEM.
Data Bus

D[n-1:0]

A[12:0]

R/W#
CS#
OE#

Pay attention: the address base has to be a multiple of the block size
(It has to finish in so many zeros “…000” as address lines has the chip)

 Consider the base address
 Identify the function of the different address bits

 Which bits are used for accessing to one position of the
device?

 Which bits are used for the selection logic?

Example:
• For the RAM of 8 Kbytes and the ROM of 8 Kbytes, the address lines A[12..0] are

needed for selecting the desired memory position in the chip (for accessing to the
block), so, they can have any value, thus it is represented by “XX...X”

• The remainder lines A[13..13], have a different value depending on the chip. This is:
• “0 0 0” for ROM→ 0x0000 - 0x1FFF
• “1 1 0” for RAM → 0xC000 - 0xDFFF

3.4. Design of a memory maps

 Decoding table
Address Lines

Highest Lines (high byte) Low byte Selection Lines

A15 A14 A13 A12 A11 A10 A9 A8 A7..A4 A3..A0 CS1 CS2 CSES1 CSES2 Selected device

0 0 0 x x x x x X X 0 1 1 1 ROM

1 1 0 0 x x x x X X
1 0 1 1 RAM

Variable

1 1 0 1 x x x x X X
Serial
Data

0 1 0 0 0 0 0 x X X 1 1 0 1 Input/Output

1 0 0 1 0 0 0 0 0000 00xx 1 1 1 0 Keyboard

Initial/Final address Selected Device

0x0000 / 0x1FFF ROM

0xC000 / 0xCFFF
RAM

Variable

0xD000 / 0xDFFF Serial Data

0x4000 / 0x41FF Input/Output
0x9000 / 0x9003 Keyboard

 Full address decoding:

The access to one memory position can be done only by one combination of the bit lines of
the address bus:
 {one physical position = one logical address}

All the bit lines are considered in the decoding, and it complicates the decoding circuitry
 Partial address decoding:

The access to one memory position can be done for several combinations of the bit lines of
the address bus:

 {one physical position = several logical addresses}
 This decoding is easier, but it can create ambiguity:
 With how many addresses can a memory position be accessed?

Number of addresses = 2number of the address lines NO considered in the decoding
How is the minimum number of address lines to be used?

At least, log2 (number of the devices to be selected)

3.4. Design of a memory maps
 Selection Logic: two alternatives

3.4. Design of a memory maps

 Selection logic
 Full address decoding

A
B
C

A13
A14
A15

0

2

4

CS1

CS2 …..

ES1

Decoder
 3/8

E
Address Valid
 AS# 7

B
C
D

A10
A11
A12

0

2

6

Decoder
 3/8

E

7 6
ES2 …..

A9 A

3.4. Design of a memory maps

 Design the selection logic belonging to the previous example by using
partial address decoding

 How many addresses are used for accessing to each device?

Exercise

3.4. Design of a memory maps

Example of design 2:

A system has a space address of 64 K x 8, occupied for 2 Kbytes of memory ROM
starting from address 0, and other 2 Kbytes of RAM starting from address 8000H.
Besides, the 4 last addresses are used for selecting 4 registers belonging to a
peripheral.
 Draw the address space and indicate the range address occupied for each device

 Design the selection logic for full and partial address decoding

Example of design 2:

3.4. Design of a memory maps

Example of design 2:
Solution

3.4. Design of a memory maps

Solution by using full address
decoding

Solution by using partial address
decoding

Pay attention: each ROM position is accessed with 16 different
addresses; each RAM position with 8, and I/O with 213

Addresses ROM
Addresses RAM
Input / Output

Address Bus

Address
Bus

Example of design 2:
Solution

 Access management and timing
 When analyzing uP connected to a memory device:

both uP + memory timings have to be studied and compared
 Access time to memory is a limiting factor of the performance of a

digital system
 Access time is always slow, compared with the uP
 Access time depends on memory type, technology and manufacturing
 It also depends on interconnection to the uP

 Approach working with slow memories:
 Solution: extend the uP read/write cycle according to each memory

 How? By adding wait cycles, until all data are read/written.
 How can wait cycles be added?

3.5. Access management and timing

 Notation:
 Bus: Signal formed by a set of lines

 High Impedance (HiZ)

 Unknown value (irrelevant)

 Logic ‘0’ and ‘1’

 Undetermined moment of change
in a signal

0 0 1

High Impedance (HiZ) (HiZ)

(OxM..N) (OxK..L)

3.5. Access M+T: timing diagram

 Access time (ttacc): from the transaction start (address valid at its bus) to the moment
data is valid at its bus

 Read cycle (tRC): minimum time between two consecutive accesses

 tacc ≈ tRC

tacc

tRC

Data valid

Address valid Address Bus

 CS

 R/W

Data Bus

CPU

Memory

3.5. Access M+T: Read timing diagram

 Write cycle (tWC): minimum time between two consecutive accesses

 Writing pulse (tW): minimum time of write enable to perform the write

tWC Write cycle
tW Writing pulse
tDW Writing set-up time
tDH Writing hold time
tAW Writing address set-up time
tWR Writing address hold time

Write cycle (tWC)

Data valid

Address valid Address Bus

 CS

 R/W

Data Bus

CPU tAW tWR

tDW tDH

tW

3.5. Access M+T: Write timing diagram

3.5. Access M+T: example SRAM (1/5)

3.5. Access M+T: example SRAM (2/5)

3.5. Access M+T: example SRAM (3/5)

3.5. Access M+T: example SRAM (4/5)

3.5. Access M+T: example SRAM (5/5)

3.5. Access M+T: example EPROM (1/5)

3.5. Access M+T: example EPROM (2/5)

3.5. Access M+T: example EPROM (3/5)

3.5. Access M+T: example EPROM (4/5)

3.5. Access M+T: example EPROM (5/5)

Cycle bus
 It is the time the uP requires for carrying out one operation (read/write)
 It is measured in clock cycles, and there is sometimes a control line informing that

the operation is carried out in the minimum cycle bus
 Example of a cycle bus: 4 clock cycles, and /DTACK control line

 Example of an extended cycle bus: 2 extra clock cycles

3.5. Access management and timing: Cycle bus

DTACK

CLK
S2S1S0 S4S3 S7S6S5

 How many wait cycles have to be added?
 Comparing between two times:

 Selected time (tselection): time while the memory is selected by the uP
 Access time memory (taccess): access time required by the memory for carrying out

the selected operation
 Two situations can happen:

1. tselection≥ taccess No extra cycles are required
2. tselection< taccess Extra cycles are required. How many?

Number of extra cycles=(taccess – tselection)/Tclock

Round to the upper integer

3.5. Access management and timing: Cycle bus

 Example of a reading cycle
 Influence of circuit connections

Delays: LS1, 15<td<29ns, and LS2 4<td<10ns

3.5. Access management and timing: Cycle bus

27C040

D[7:0]

A[19:1]

PROC.

Data Bus

A[23:1]
Selection

Logic

LS1

CSm#

 R/W#

xDS# LS2

 Interpretation and management of timing schedule and uP signals (20 MHz)

Reading cycle

DAT. IN

R/W

UDS , LDS

AS

A1..A23

CLK
S2 S1 S0 S4 S3 S7 S6 S5

7 8

5 2

4

3
1

 tmin (ns) tmax (ns)
1 25
2 3 25
3 3 25
4 0
5 0 25
6 0 25
7 5
8 0

3.5. Access management and timing: Cycle bus

 Checking in the memory datasheet the access time to load/store data ACCESS TIME

3.5. Access management and timing: Cycle bus

Digital Electronic Systems Department of
Electronics

 Generate a timing schedule where intermediate uP signals in the circuit and chip
select memory signal are included

 Compute the memory select time

3.5. Access management and timing: Cycle bus

 Check if memory selection time is larger than access time
 tCE < 120 ns tOE < 50 ns

 tSel OE > tOE (56-50 ns)
 tSel CE < tCE (66-120= -54 ns)

As access time is larger than select time, it is necessary that CPU inserts wait cycles
The additional select time needed is 54 ns
As clock cycle is 50 ns, 2 wait clock cycles are inserted

You must check in all types of memory in the circuit

3.5. Access management and timing: Cycle bus

	ARM Cortex M3(i)
	Index
	3.1. Memory maps
	3.1. Memory maps
	3.1. Memory maps
	3.1. Memory maps
	3.2. Memory Expansion
	3.2. Memory Expansion
	3.2. Memory Expansion
	3.2. Memory Expansion
	3.2. Memory Expansion
	3.2. Memory Expansion: word length
	3.2. Memory Expansion: word length
	3.2. Memory Expansion: number of words
	3.2. Memory Expansion: number of words
	3.2. Memory Expansion: number of words
	3.2. Memory Expansion: number of words
	3.2. Memory Expansion: number of words
	3.2. M. Expansion: nº of words + word length
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.3. Memory Management & Data Alignement
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.4. Design of a memory maps
	3.5. Access management and timing
	3.5. Access M+T: timing diagram
	3.5. Access M+T: Read timing diagram
	3.5. Access M+T: Write timing diagram
	3.5. Access M+T: example SRAM (1/5)
	3.5. Access M+T: example SRAM (2/5)
	3.5. Access M+T: example SRAM (3/5)
	3.5. Access M+T: example SRAM (4/5)
	3.5. Access M+T: example SRAM (5/5)
	3.5. Access M+T: example EPROM (1/5)
	3.5. Access M+T: example EPROM (2/5)
	3.5. Access M+T: example EPROM (3/5)
	3.5. Access M+T: example EPROM (4/5)
	3.5. Access M+T: example EPROM (5/5)
	3.5. Access management and timing: Cycle bus
	3.5. Access management and timing: Cycle bus
	3.5. Access management and timing: Cycle bus
	3.5. Access management and timing: Cycle bus
	3.5. Access management and timing: Cycle bus
	3.5. Access management and timing: Cycle bus
	3.5. Access management and timing: Cycle bus

